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ABSTRACT 

The fields of a dipole antenna i m m e r s e d  in  a lossy uniaxial medium 

are  determined.  

t e r m s  of the sur face  integral  of the Poynting vector on a sphe re  centered 

at the antenna, and computations of this are presented as plots of the 

effective res i s tance  against  the radius of the sphere  for  various antenna 

lengths and medium losses .  

the effective res i s tance  is found to be inversely proportional to  antenna 

length near the antenna but proportional to the square  of the length a t  

l a rge  dis tances .  These resu l t s  a r e  used t o  provide a n  explanation fo r  

the paradox of increasing radiation r e s i s t ance  with decreasing antenna 

length which occurs  in loss less  hyperbolic anisotropic p lasmas .  

A quantity named ' 'effective resis tance" is defined in 

A t  frequencies below the plasma frequency, 
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1 a INTRODUCTION 

The theory of dipole radiation in  anisotropic media has  been exten- 

sively investigated, and seve ra l  methods have been used to  calculate the 

dipolels radiation resistance.  

proximation to  the problem and used the induced E. M. F. method to ca l -  

culate the mpst  impedance of a dipole oriented in the z direction. 

relationship, .Jalid for shorr dipoles, i s  

Balmain [1964] used a quasi-static ap- 

His 

(1. 1 )  

where Z is the input impedance, w is the operating angular frequency, 

E, is the permit t ivi ty  of vacuiimp L i s  the half-length of the antenna, b 

is the radius of the arrtenna, a = m, and where K' and K 

in the relat i  Je permittivL:y marrix K 

expression for K is 

in  

a r e  t e r m s  
0 0 

character iz ing the medrum. The 
m 

m 

( 1 .  2 j  

When the anisotropic medium i s  a loss less  p lasma operating at a 

f requency which is below both i t s  gyroresonant frequency and p lasma 

freqaency, K ' / K  will be real  and negative. Under this condition, :he 

r e a l  pa r t  of (1, 1 1  will be 

0 
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(1.3) 

where  R 

impedance of vacuum, and k is the f r e e  space wave number.  Ration- 

alized M. K. S. units a r e  used throughout. 

R is proportional t o  L ir= :his case,  whereas  i n  v a c u x n  R is known 

to  be proportional to  L 

s',stance is  equal to  the radiation res i s tance ,  leading to the surpr i s ing  

resu l t  !hat a short  antenna has  a l a rge r  radiat ion res i s tance  thari a long- 

er one: 

1s +he r e a l  pa r t  of the h p u t  impedance, is the charac te r i s t ic  
in  

0 

Hence the input res i s tance  

- 1  
in in 

2 
Because the medium is lo s s l e s s  the input r e -  

If K ' / K  w e r e  pos~ t ive ,  howevep, Z .  of (1. 1 )  would be purely 
0 i n  

imaginary,  s o  the input res i s tance  in t h i s  c a se  mould be zero.  

corresponds to  the vacaum space behavior of L 

This 

2 
however, because the 

higher Drder t e r m s  i 2  1%1. 1: ha.:e been effectively neg1ec:ed by the quasi  - 

stat:c approach. 

The same problem was Tnvestigated by Sta ras  [1964] who used a 

vo lune  soLrce d;str,bLtion which was of finite d iameter  and had a r a the r  

e laborate  form as an approxima:;on to  the dipole cu r ren t  distribution, 

His resLlts indicated thav the radiation r e s i s t ance  approaches ze ro  a s  

L when K ' / K  is negative, in contradiction to (1.31 which essentially 
2 

0 

assumed a 1y.near f i lamentary cur ren t  distribution. 

Further  stud;es hawe been made for  rhe uniaxial medium in  which 
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K" of (1. 2)  i s  zero. can be 

removed by a simple scaling procedure,  no loss of generali ty resillts 

f rom also setting K '  = 1. 

then acquire the fo rm 

Because a sca la r  factor of the mat r ix  K 
m 

The relative permitt ivity ma t r ix  of (1. 2)  would 

K =  
m 

r1 O O l  
K =  1 

Seshadrl  E19651 ipvestigated the radiation res2smnce of a dipole in  

this uniaxial medium by using a Fourier  t ransform for the z coordinate, 

ftnding the field components in  this t ransform domain, and then expres-  

sing the power as  an integral  in the t r ans fo rm domain with the aid of 

Pa r seva l ' s  theorem. His resul t  for  the case  where K i s  negative is 

where again (and throughout this study) the dipole was in the z direction, 

Equation (1. 5) corresponds t o  Balmain 's  relation of (1. 3 )  for  this medi -  

um. For K positive, Seshadri found R to  be proportional to  L c o r -  

responding to i t s  behavior i n  isotropic media. 

2 
in  

Mittra [1965] studied this phenomenon in  a manner  s imi la r  to that 

of Seshadri  and ar r ived  at the same  resul ts .  He pointed out that the ra-  

diation resis tance i s  independent of the medium pa rame te r  K except for 

the fact that i t  is equal t o  i t s  f r e e  space value when K i s  positive, but i s  
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a complerely different value when K is negative. 

was attr ibuted to the fact  that  this s imple model  i s  unreal is t ic  because 

the medrum was  considered +c be Infinite in extent and because p lasma 

sheath effects year the antenna were  ignored, 

when the ,med;um i s  lossy 

the radiation resistance.  

This cur ious behavior 

He a l so  r emarked  that 

The input res i s tance  can  no longer be called 

The behavior of the radiation res i s tance  of sho r t  dipoles with length 

is related to  the power del ivered by an infintesimal dipole of finite mo- 

ment ,  Let RI'Li be the radiation res i s tance  of a dipole with p re sc r ibed  

cur ren t  d l s t r i b ~ t i o n  as  a function of i ts  length, The power radiated by 

the dipole can be wri t ten a s  

(1.6) 

where I I S  the peak value of the cu r ren t  a t  the center  of the antenna. The 

peak value convention for  alternating cLrrents  and fields is used through- 

out this study. But M = ALL where M is  the dipole moment and A i s  a 

proportionaiity constant which depends on the cu r ren t  distribution. 

in  t e r m s  of the dipole moment,  

So, 

11.6 I becomes 

Pt is seen  from (1. 71 that for  p to approach a non-zero,  finite l imit  

L approaches zero,  R I L )  m u s t  approach z e r o  as L . 

a s  

2 
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The work by Balmain and Seshadri  thus implies that the power r a -  

diated f r o m  an infintesimal dipole i n  an anisotropic medium charac te r -  

ized by (1.2) is infinite. This phenomenon has  been observed by other 

authors, and has  acquired the name !'infinity catastrophe. (See, for 

example, Kogelnick [ i960]  and Arbel and Fe lsen  [1963]). To resolve 

this, Lee and Papas 119651 have recently presented a new theory of an- 

tenna radiation. They proposed That the power obtained by the "conven-. 

tional procedure" is composed of TWO par t s ,  P and P and that 

only P 

that P 

medium even when K'/K 

rev  i r r  

is actually absorbed by the shpere  a t  infinity. 

is finite for an infintesimal dipole immersed  in  the arrlsotropic 

They contend 
ir r 

ir r 

is  negative, so f rom (1. 7 ) >  and using this 
0 

me%hod of calculation, the radiation resis tance of shor t  dipoles must  be 

2 
proportional to L a 

atdthors ,Lee and Papas,  19661 coitends that even Using the "conventional 

merhod" of calculation, the power radiated by the unit infintesimal di-  

Furthermore,  a m o r e  recent  paper by the same  

pole in a uniaxial medium (characterized by (1. 41 with K negative ) is 

equal to the power radiated in vacuum. 

of shor t  dipoles i n  this medium would be proportional to  L 

diction to  the resu l t s  of Seshadri, etc. 

Hence, the radiation resis tance 

2 
in contra- 

It should be apparent at this point that  there  is some doubt as to  

the radiation res i s tance  of short dipoles i n  this uniaxial medium. In 

order  t o  add some new insight to this  quandary, this  study investigated 
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the problem by a different method. 

e i ther  near  field methods o r  Fokr i e r  t r a n s f o r m  methods to  compute the 

power delivered t o  the medium by the source.  

theorem was bsed h e r e  to  compute the power flowing out of a sphe re  

centered at the antenna. Some comments a r e  i n  order ,  however, r e -  

g a r d a g  the validity of this procedure before continuing this  discussion. 

Al l  of the above invest igators  used 

In contrast ,  Poynting's 

The fields f o r  the ;nfir,tesimal dipole i n  a uniaxial medium a r e  

given ifi Clemrnow [1963] and the fields a r e  seen  t o  be infinite on a s u r -  

face known a s  the charac te r i s t ic  cone when K is negative. Therefore ,  

the fields cannot sat isfy the homogenous Maxwell 's equations the re  be 

cause they a r e  not differentiable and hence do  not have a curl .  

doubr thus exists as to the validity of th i s  solution o r  of the solution c o r -  

responding t o  a-ry source  which has  sLngularities of the field m source -  

f r e e  regions,  These singularit ies occiir with many dipole cu r ren t  d i s -  

t r ibLtions i n  uriaxial  media  with K negatille, s o  it i s  not rea l ly  appro-  

pr ia te  t o  talk of the rad-iaTion res i s tance  in these  circumstances.  

however, instructive to  investigate the "radiat ion resis tance" of these  

soclrces as i f  the flelds obTaLned were valid. in  this study, quotes a r e  

used aroand "radlation r e s -  stance" whenever it i s  only the formal  quan- 

t i ty obtained from the sur face  integral  of the Poynting vector which is 

under discussion, and with no implications that it is to be in te rpre ted  a s  

the radiation effectiveness of the antenna. 

Some 

It is, 
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In this study, a fi lamentary dipole with finite length immersed  in a 

uniaxial medium was considered, The cu r ren t  on the antenna was as- 

sumed to  be sinusoidal; that  is, expressible  as 

The exact field expressions fo r  the antenna were  found in  closed form.  

AlthoLgh these flelds a r e  s i rgular  on t h ree  character is t ic  cones when K 

is negative, the surface integral  of the Poynting vector was determined 

with the aid of a computer to  a r r i v e  at a plot of the "radiation r e s i s -  

tance" against the length of the antenna. 

proached by introducing a slight amount of loss,  resulting i n  fields 

which remain  finite, and examining the power radiated through spheres  

of various radi i  a s  the loss approached zero. 

The problem was also ap- 

The introduction of loss was accomplished by allowing K of t l ,  44 

to become complex, o r  of the form q - j p  where  p i s  positive. 

which has  !lo 4 )  a s  i t s  relative permitt ivity ma t r ix  could be a plasma 

with an infinite s ta t ic  magnetic field applied in the z direction. K being 

r e a l  would correspond to a plasma with no collisions between electrons,  

whereas  K would be complex i f  the plasma had a finite collision f r e -  

quency. 

t rons  cannot move in a direction perpendicular to  the inflnite magnetic 

field, s o  no collisions would occur as the resul t  of an applied electr ic  

A medium 

No loss  w o d d  occur i n  the x o r  y directions because the elec-  
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field in these  directions.  

Briefly, thenJ the problem studied h e r e  was to  find the "radiation 

resistance" of a z. directed dipole immersed  i n  a lo s s l e s s  uniaxial medi-  

um by Poynt.ing vector methods without questioning the validity of the 

fields obtained, and to  study the power flow f r o m  the dipole when the 

medium Is lossys representing an  environment c lose r  t o  real i ty ,  i n  

o rde r  t o  present resu l -s  which a r e  m o r e  physically meaningful than 

those obtained for  the lo s s l e s s  case .  
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2. THEORETICAL DlSCUSSION 

The most  convenient method to  obtain the fields of a localized c u r -  

ren t  distribution in  a uniaxial medium would be to  use the principle of 

scaling discussed by Clemmow [1963] and by Bates and Mittra [1966]. 

Both papers  a r e  pr imar i ly  concerned with the case  where K is r e a l  and 

positive. Clemmow mentioned that the scaling procedure gives c o r r e c t  

r e sa l t s  when K is cegative, but neither paper d'lscusses complex K. 

Furthermore,  application of the scaling procedure for complex K is  

difficult for many sources .  For example, when scaling a line source 

such as =%(z)s(x)b(y) te rms  such as djKx) appear. If K is real ,  it is 

well known that ~ ( K X !  = i l /  blf&(x:,. however, for complex K one must  

use 6;Kxj = (l/Kl&'x) t o  achieve resu l t s  which satisfy Maxwell s equa- 

tions. A valid c r i t i c i sm for this procedure is that the definition of the 

Dirac delta fmct ion  is not valid for complex arguments.  The purpose of 

this  sections then, i s  to develop a procedure to  find the uniaxial fields of 

a line soilrce by scaling only the vacuum fields and not the source  itself. 

2. 1. Justification of the Scaling Procedure  

Maxwe1l.s equations for a uniaxial medium with eJut time depen- 

dence assumed a r e  

oxjq = j r u € o K J + J  (2. 11 
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K = [  0 j 2  
m i2. 3 )  

- 
a n d p  IS the permeabilrty of vacuum, E i s  the e lec t r ic  field intensity 

- -_ 
vector,  H is the magnetic field intensity vector, and J is the cur ren t  

- 
density vector,  Eliminating E f rom 12. 1 )  and (2. 2 )  r e su l t s  i n  

Deflne the Fourler  t ransform of the vector field components as 

--a0 

- 
where  f = x, y, o r  z ,  and A is  a source o r  field vector. Transforming 

both s ides  of 1 2 ,  4t resu l t s  i n  the mat r ix  equation 

t j k  n --jkom 
0 

0 

--jkon 0 +Jk()! 

+.jk m -jk$ 0 
- 0  

t j k  n - jk  m 
0 0 

0 0  

S j k J  
0 

0 

- j k g  0 
K 0 0 

Considering cnly z directed cur ren ts  and simplifying, 
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- 

where Jix, ys z) = zJ(x, y, z ) .  Multiplying both sides 

11 

of (2 .  7) by the in- 

ve r se  of the ma t r ix  on the left resul ts  in the equations. 

0 iz. l0J 

where 

- 
The above equations imply the existence of a potential Atx, y3 z i  = 

zA(x, y, z )  such that H=VXA F r o m  i2. 81, (2. 91, ( 2 0  l l ) ,  and the mat r ix  

which corresponds to the cur l  operator,  the potential in  the t ransform 

domain is recognized as 

- - 
A 

(2 .  12)  

Let J=d(x,&y)&iz), corresponding to  a unit infintesimal dipole in the z 

direction. In the t ransform domain, this source  is 
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(2.13) 

F r o m  i2. 12'3, (2. 13), and the inversion in tegra l  for  (2. 5), the  z compo- 

nent of the vector potential corresponding to  this source  can be wri t ten 

in the {x, ys z )  domain as 

-00  

Rearranging ( 2 .  141 resu l t s  in the equation 

The integral  i n  brackets  can be integrated d i rec t ly  using Cauchy's integ- 

ra l  formula,  
1 2-1-27 

The integrand has  two poles, one at n = -c-J K K  --m 

1-2-1-27 
and the other a t  n = + c ~ j  -- m . K 

cp 
complex number reJ@ as d?eJXfor  - T < C P ( T ,  and noting that  K will  have a 

Defining the square  root of the 

negative imaginary par t ,  the poles will  be in the second and fourth quad- 

ran ts  of the complex plane for all values of l a n d  m. Closing the con- 

tour  on the top will  then allow the integral  t o  be evaluated fo r  z>O. 

Equation ( 2 .  15) then becomes 

(2. 16 )  

.I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
1 
1 
1 
I 
I 
I 
1 
I 
I 
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1 
Pe r fo rm a change of variable on (2. 16j, letting]=- K p  ‘OsQ ’ 

m = ~p sincp x = r cos@ and y = r s i n e  . Then, 
1 

(2.17) 

Equation i2. 17) can be easily integrated with respec t  to C p 2  resulting in 

the one dimensjonal integral  

(2. 18) 

2- 
Performing another change of variable, w i t h v  = 9 -K k 0 21- m? 0 

resu l t s  in the contour integral 

where for  K = a(-JP, P>O, the contour C will be as shown below. 

* QeC‘v3 - 
r 

C 

This contour can be deformed onto the positive r ea l  axis because the 

integrand is analytic. The integral  in (2 .  19)  then becomes an integral  
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f r o m  zero  t o  infinity, a definite in tegra l  which i s  given in  Bateman 

[1954]. The resul t  is 

(2. 20)  

Equation (2. 201 is then recognized a s  the vector potential for  the 

0 .  
s a m e  source  i n  vacuum af ter  a suitable change of variable. 

designates the vector potential f o r  the unit z directed dipole i n  vacuum, 

then 

If A (x, y, z )  d 

All of the above s teps  a r e  v d i d  for  the imaginary  p a r t  of K s t r i c t ly  neg- 

ative and for L positive. Equations (2. 20) and (2. 21) a l so  hold for  z 

negative by symmetry,  
- 

The vector potential f o r  a line source  J="~T(z~&~.x )&(Y)  is eas i ly  

found by sdperposition using \ 2 .  2 1 ) -  Expressing the superposition in 

integral  f o r m  resu l t s  in the equation 

y, z - d ) d d .  

--eo 

Substituting ( 2 .  2 1 )  into rZ, 221 resu l t s  i n  

(2. 22) 

(2. 23j 

.I 
I 
1 
I 
1 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
1 
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Finally, recognizing (2. 23) a s  a scaled vers ion of the vector potential 

for the s a m e  line source  i n  vacuum resul ts  in 

A(x, y, z) = A o ( q K x y  q K y ,  z )  . (2. 24) 

0 where A (x, yp z )  is the free space vector potential for  the line source.  

The scaling procedure for the field components can be derived 

1 K-lmZ with (2. 241, - 
jJ-)Q m 

- - - 
s imi la r ly  using the eqzations H =VXA and E 

result ing i n  the equations: 

Ex(x, yy z )  = <K Eo(d-Kx, “JKy, z )  

E (x, y. z )  = I ~ K  EO(<KX, q ~ y ,  z )  

E (x, y, 2) = E O ( ~ K X ,  G K ~ ,  2) 

H ~ ( X ’  yp z )  = “JK H O ( ~ K X ,  < K ~ ,  z )  

H (x, y, 2 )  = 6~ H O ( < K ~ ,  ‘ \ j-~y, 2 )  

(2. 2 5 )  

(2. 2 6 )  

(2 .  2 7 )  

(2 .  28) 

(2. 29) 

X 

Y Y 

Z z 

X 

Y Y 

Equations (2. 25) throilgh (2. 29)  represent  a means of obtaining the 

fields of a line source  in  the z direction immersed  i n  a uniaxial medium 

f rom the vacuum fields of the s a m e  source.  The procedure is  valid for  

a l l  K with a negative imaginary part, as demonstrated above. The val-  

idity of the procedure for rea l  K can be established by allowing K to  ap- 

proach the r e a l  axis f rom below. 

ly  as K becomes reals the procedure of (2. 25) through (2 .  29)  s h o d d  be 

valid f o r  K real .  Unfortunately, this is not the case  for some sources  

when K i s  negative a s  the fields approach infinity in  cer ta in  directions.  

If the fields approach a limit uniform- 

This point will  be discussed fur ther  in section 4. 
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2. 2. Dependence of the Radianon ResSstance on the Medium 

Paramete r  K 

The above development of a scaling procedure for  K complex e s -  

senrially completes the theoret ical  background necessa ry  for  this study. 

However, analysis of the pre l iminary  numer ica l  resu l t s  has  led t o  an 

interesting theoretical  discussion regarding the behavior of the radia-  

tion resis tance of a f i lamentary current  dis t r ibut ion with changes i n  the 

medium parameter  K. The resu l t  of this  discussion (which appears  be- 

low) is  tha+ muitiplying K by a r e a l  and positive constant does not affect 

the radiation resis tance of z directed line sou rces  in  the medium. The 

discussion t o  follow, however, departs  f r o m  consideration of line 

sources  exclusively in o rde r  to  develop the phenomenon in  full general-  

i ty? and then proceeds t o  line sources  as a spec ia l  case.  

If the sources considered a r e  only those for  which the scaling p r o -  

cedure oktlined by Clernmow [1903] can by applied without difficulty, the 

method would re la te  a source  and field dis t r ibut ion in  a uniaxial medium 

to  a corresponding vacuum source and field. 

ve r se  magnetic with respec t  to z, the  equivalence is par t icu lar ly  s imple 

and is repeated below for  the relat ive permi t t iv i ty  ma t r ix  of (2.  3 ) .  

Here  the quantities without superscr ip t  r e f e r  to the uniaxial medium 

whereas  the superscr ipt  “ 0 ”  designates f r e e  space quantit ies.  

If the fields a r e  trans- 

E ~ ; X ’  y, 21 = 4~ EO(~\/KX, “SKY, z )  (2. 3 0 )  
X 

.I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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E (x, y9 2) = 2 i r ~  E O ( ~ K X ,  C K ~ ,  2) 

E (x, y, z )  = E O ~ G K X ,  d ~ y ,  z )  

H X (x, y, z )  = ~ J K  HO(GKX, X G K ~ ,  2) 

(2.  31) 

(2. 32) 

( 2 . 3 3  j 

(2. 34) 

H (x, y, L) = 0 (2.35) 

Y Y 

Z z 

H (x, yo 2) = ~ J K  HO(I \~KX,  <KY$ 2) 
Y Y 

z 

J ~ ( X ,  y, 2) = 4~ J O ~ ~ K X ~  G K ~ ,  2) i2. 361 
X 

J (x, y1 z )  = 4 K  J o ( d K x ,  d K y ,  z )  ( 2 . 3 7 )  

i2. 3 8 ,  

Y Y 
J (x, y 9  2 j  = K JO(GKX,  C K ~ ,  z) . 

z Z 

If one considers  two unaixial media with relative permitt ivity 

mat r ices  

K =  
m l  

and K =  
m2 

0 1  

- 
1 0  

0 1  

0 0  - 

- 
0 

0 

K2 

( 2 . 3 9 )  

3 ( 2 .  40 I 

then for each admissible  source-field pair  i n  medium 1 there  is a c o r -  

responding pair in medium 2. 

relating fields and sources  i n  each medium to  f r e e  space  using equations 

(2. 3 0 )  through (2. 38)  and effecting a change of variable to  obtain the re-  

lationship between quantities in mediums 1 and 2. 

The relationship can be made  explicit by 

The resu l t s  a r e  

( 2 .  41 E” (x, yg z )  = b E’ (bx, by, z )  
X X 
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E" (x, y, z )  = b E'  (bx, by, z )  (2.  4 2 )  Y Y 

E" Z (x, y, z )  = E'  Z (bx, by, z )  ( 2 . 4 3 )  

(2 .443  HI1 (x, yq z) = b HI (bx, by, Z) 
X X 

HI' (x, y, z )  = b HI (bx, by9 2) (2 .451  Y Y 

H;(x, yo z )  = HI (x, y, z )  = 0 (2.  4 6 )  
Z 

JL(x, y, z) = b J '  (bx, by, z )  ( 2 . 4 7 )  
X 

J" (x, y, z )  = b J '  (bx, by, z )  

J;(X, y, z )  = b 

Y Y 
2 

J '  (bx, by, z )  , 
Z 

(2 .  4 8 )  

( 2 . 4 9 )  

where b = E  (2. 50)  

and the ' I  and I r e f e r  to mediums 2 and 1 respectively. Considering only 

r e a l  and positive b, the power delivered by a source  in  medium 2 can be 

related to the power delivered by the equivalent source  i n  medium 1. 

The power i s  defined as 

(2, 51) 

-00 

Using equations (2 .  41) through (2 .  4 9 ) ,  and noting that  s ince  b is r e a l  the 

sca le  fac tors  do not affect  the conjugation, 

+- 
P" =fl b2[EI (bx, by, z ) J '  :I:(bx, by, bz ) t .  . . ] dxdydz . 

X X 

-00 

Let  x!=bx and y'=by. Then, 

(2 .  5 2 )  

(2.  53) 

* I  
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 



The right side of (2 .  53j is then recognized as P'. Thus in a ani-  

axial medium the power delivered by a source  distribution which p ro -  

duces a t r a n s v e r s e  magnetic field is the s a m e  as  the power del ivered by 

its corresponding source  i n  another uniaxial medium as  long as the ratio 

is r e a l  and positive. 
K2 

K1 

- 

A simplification results i f  the sou rce  1s a z directed line source ;  

that  is, expressible  as  

- 
J'b, y, 2) = ~ I ( z l 6 b ) 6 ( y )  (2. 54)  

The resul ts  of section 2.1 a re  then applicable and a development pa ra l -  

l e l  to that above except using (2. 25) through (2. 29j would show that the 

power delivered by a line source in  medium 1 would be equal to  that de -  

l ivered by the same  source  in medium 2, again a s  along as - i s  r e a l  

and positive. 

of radiation resis tance.  

K2 

K1 
If in addition K1 and K a r e  r e a l  it is meaningful to speak 2 

Because the radiation res i s tance  depends only 

on the power and current,  both of which a r e  the s a m e  in  the two media,  

the radiation res i s tance  of the source  mus t  then be the same,  

In par t icular  the radiation res i s tance  of a z directed dipole in  a 

uniaxial medium with K r ea l  and positive is the s a m e  as  it is in  vacuum 

i f  the cu r ren t  distribution of the dipole is the s a m e  i n  the two media. 

Fur thermorep  if K i s  negative and the procedure of (2. 2 5 ;  through (2. 29, 

is valid, the "radiation resistance" of z directed dipoles in  this medium 



2 0  

would be the same a s  i t  is for  K = -1. 

only the case  where K = -1 needs investigation. 

radiation resis tance under multiplication of K by a r e a l  and positive con- 

stant is in agreement with the resul ts  by Seshadri ,  etc. 

In numerical  computations, then, 

This invariance of the 

.I 
I 
I 
I 
I 
t 
8 
l 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
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3. N U M E R I C A L  P R O C E D U R E  

As stated before, the objective of this r e s e a r c h  is to study the 

"radiation resistance' '  of dipole antennas in uniaxial media using P o p -  

ting vector methods. The f i rs t  step, then, would be t o  find the fields of 

the dipole. 

(2. 29)  re la tes  the des i red  fields to those of the same  source i n  vacuumJ 

hence 

the source.  

The scaling procedure outlined in  equations (2. 25) through 

reducing the problem to that of obtaining the vacuum fields for 

Consider, then, a dipole antenna i n  the z direction with half- 

length L. If the  dipole is assumed to  have a sinusoidal cur ren t  d i s t r i -  

bution, that is 

A J = z 1, s i , A ( L -  

then the exact fields of the source 

(3.1) 

i n  vacuum a r e  known [Jordan, 19501, 

A simple, but algebraically involved, application of (2. 25) through (2. 29) 

to  the vacuum fields r e s u l t s  in the uniaxial fields, which a r e .  

(3. 2 j  
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( 3 . 3 )  

where 

(3 .  5) 

and where r ,  8, and q3 a r e  the polar coordinates var iables .  

Having the uniaxial fields for the source ,  the next s tep  would be to  

- 
compute the Poynting vector P, which is defined as 

The power delivered by the antenna would then be 

n +n 
pa = f-'. p (qQJ 9) P r z  sjn 8 d p d ~  

0 -n 

( 3 . 7 )  

where  the Poynt ing  vector has  been integrated on a sphe re  of radius  r. 

The Poyntfng vector is independent of p, and is symmet r i c  in  0 about 

7-r 
0 = - D  Equatlon ( 3 -  8 )  can  then be rewr i t ten  as  2 

l7+ 

Po = 47T'-f5r (c  6) rLs.jH d e  , 
0 

( 3 .  9)  

. 8  
1 
8 
1 
8 
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where P (r, 0 )  is the radial  component of the Poynting vector. 
r 

to  form P ir, 0) it is necessary  to  conjugate H, and thus one must  know 

the value of K because r r and r m a y  be real9 imaginary, o r  com- 

plex. 

pending on whether K is real o r  complex. 

3. 1. Lossless  Media 

However, 

- 
r 

0’ 1’ 2 

For  this reason, the problem will be approached differently de-  

The medium parameter  K is r e a l  i f  and only i f  the medium is loss -  

less.  

cause this was shown to be equivalent to vacuum. 

ed negative, and se t  equal to  -1 for  convenience. 

through ( 3 . 6 )  then become 

There  is no need to investigate the case  where K is positive, be- 

K will then be assum-  

Equations (3 .4)  

h = r J ( r o s  B+ +)=- 5 in ’B ‘  (3.12) 

Equations (3. l O j  through (3. 1 2 j  show that r r and r m a y  be 
0’ 1’ 2 

positive or  imaginary depending on the value of r and 0. 

the antenna, the sphere  of integration, and the four regions where dif- 

Figure 1 shows 

ferent  ones of the variables r r and r a r e  imaginary,  hence making 
0’ i s  2 

the Poynting vector acquire a different form. 

led 1 through 4 i n  o rde r  of increasing 8. 

These regions are label-  

Using (3. 7 j  and noting which of 



-r 
i 

\ \ \ 

F i g u r e  1 G e o m e t r y  of t h e  Antenna and  i t s  E n v i r o n m e n t  

.I 
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I 
1 
8 
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r 

gion, result ing i n  the formulas:  

r and r a r e  i m a g k a r y  allows P ir, e)  to be computed in each r e -  os 1' 2 r '  

Region 1: 

Region 2: 

(3 .  1 3 )  

Region 3: 

13. 15)  
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Region 4: 

P = o ,  r (3 .  16) 

w h e r e a = k  L, a = k  r, a = k  r a = k  r a = k  r 
0 0 1 0 1 ' 0  0 0 ' 2  0 2 '  

2 L. 2' 2 2 '  
sin 8 - (cos 8 - -) , and b = k r s in  8 - cos 8 .  r 0 0  

2 P  
0 The ! ' radiation resis tance,  ' I  then, i s  given by R = - where  I i s  2 '  I 

the cu r ren t  at the center  of the antenna, o r  I = I s in  (k L). Using m 0 

( 3 .  9 )  and (3, 13)  through ( 3 .  16)' an integral  expression for the " r ad i -  

ation resistance" can be derived. This formula,  after simplification, 

i s  

' J  L 
9, 
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and Q a r e  those where 
19 '09 2 In ( 3 .  17) and in  Figure 1, the angles Q 

r r and r become zero,  respectively.  1' oa 2 

It can be seen  f rom close inspection of ( 3 .  17)  that the integrand 

(Throughout the following dis- and 8 
19 '09 2' 

approaches infinity at Q 

cussion, r is assumed to  be fixed). i n  each region, the integrand is  

composed of t h ree  t e r m s .  At each end point, one of these t e r m s  

becomes infinite because its denominator approaches ze ro  a s  m9 
where Q. i s  the angle of the singclarity. Thus, the integral  exists,  al- 

1 

l 
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though i t s  complexity defies attempts t o  in tegra te  i t  directly.  

t egra l  as writ ten cannot be per formed numerical ly  on a computer e i ther  

because the integrand is unbounded. However, a method can  be devised 

whereby a known integral  is subtracted off and the remaining in tegra l  

The in- 

evaluated numerically.  To demonstrate  this method, computation of the 

f i r s t  integral  in ( 3 .  17)  will  be explained. 

The integral  can  be wri t ten as 

(3. 18) 

where f 

at Q1' 

in sp'te of the t e r m  " s in  (Q)I '  in the denominator).  

iQ) and f \Q) a r e  analytic i n  [0, 8 ] and g ( Q )  approaches ze ro  1 2 1 1 

(Note that the integrand approaches z e r o  a s  0 approaches zero  

Explicitly, 

Equation (3. 18) can be r ea r r anged  a s  

( 3 . 2 0 )  

(3 .  21) 
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0 

f l  ( @ I  
g1(Q) 

Or,  letting f3 (Qj = - 

Analysis will reveal  that 

the integrand if (0) f f 2  3 

f l  i@J 
qT - and evaluating the second integral, 

(3. 23j 

f 3  (Q) approaches ze ro  as 8 approaches Q12 so  

(e))  is now bounded and continuous, and hence 

can  be evaluated numerically on a digital computer. 

All of the difficulties of (3. 7 j  were  handled i n  a manner like that 

of the above example. The radius of the sphere  on which the integral  is 

performed does not affect the result ,  as long as the sphere encloses the 

antenna, s o  r was s e t  equal to 4L in the computations. The resul ts  are 

presented in  Figure 2 a s  a plot of the "radiation resistance" against the 

length of the antenna, with \ l o  5) ,  the equation obtained by Seshadri: al- 

so  plotted for  comparison. 

havior of the computer results,  some difficulty was encountered i n  the 

numerical  evaluation. This is thought t o  be because the integrand was 

still ve ry  badly behaved even after subtracting off its singular behavior, 

and because forming the integrand involved finding a sma l l  difference 

between la rge  numbers and hence s t r e s s e d  the accuracy  of the computer 

used. However, i n  spite of the e r r a t i c  behavior, Figure 2 still demon- 

As can  be seen  f rom the slightly e r r a t i c  be- 
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s t r a t e s  that  this method yields r e su l t s  which a r e  quite c lose to  those ob- 

tained by Seshadri .  

3. 2. Lossy Media 

When K becomes complex, radiation r e s i s t ance  no longer has  

meaning because power i s  los t  to  the medium. However, it i s  helpful to  

define "effective resis tance" as a useful extension of the t e r m  as 

Tr +Tr 

(3. 24) 

where  again the in tegra l  is performed on the sur face  of a sphe re  of 

radius  r centered a t  the antenna., I i s  the cu r ren t  at the center  of the 
- -  

antenna, and P (r, €I) = 1/2 Re(EXH:I:).$. R is  then a function of the 
r 

antenna length and the dis tance f r o m  the antenna (radius  of the sphe re  

of integration),  and can be thought of as the power radiated by the an- 

tenna 

at ~ t s  

through a sphe re  of radius  r when it has  O a m p e r e s  of cur ren t  

cent e r a  

Because P fr, 01 is confinuous and bounded when K is not r e a l  and 
r 

negative, evaluation of ( 3 .  241 is s t ra ightforward in thls case .  

puter was programmed t o  evalLate E 

compcite P , and then integrate  it to  f o r m  R f r o m  ( 3 .  24). 

The com-  

and Hq f rom ( 3 .  2 )  and ('3. 31, 
€I 

r 

Figure 3 is a plot of R a s  a function of the dis tance f rom the an-  

tenna f o r  an  antenna with a total length of . 0 2  f r e e  space  wavelengths 

jk L = 01) acd for  K = - 1 - J p  for s e v e r a l  values of p. It demonst ra tes  
0 
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that R approaches the "radiation resistance" of the antenna (for K = - 1 ,  

for every  fixed r a s  p approaches zero.  

Figure 4 i s  a plot of R a s  a function of r for antennas of s eve ra l  

lengths, where K = -1-j. 03. 

res is tance near  the antenna varies inversely with L a s  in  the loss less  

cases  the curves c r o s s  a t  l a rger  distances until eventually the longest 

antenna has the la rges t  effective resistance.  

I t  demonst ra tes  that although the effective 

Figure 5 plots R a s  a function of antenna length for r = . 02 f r e e  

space wavelengths, and demonstrates  that although R increases  with de-  

creasing length at  first, it eventually decreases  again as  the length ap- 

proaches zero. The straight line again represents  the equation 

R = -  ' the resu l t  obtained b y  Seshadri  for a loss less  medium with 2k L '  
0 

K negative. 

The fact that the curves c r o s s  in  Figure 4 i s  quite interesting, 

and i t s  implications a r e  discussed in  section 4. It means that the at- 

tenuation of the fields of a shorter  antenna is m o r e  rapid, a t  l eas t  in  

the range plotted in  the figure. The reasons for this a r e  not evident 

f rom 13. 2 j  and (3. 3 ) 9  so further study was made of this phenomenon. 

In particular,  a computer program was writ ten to compute the power 

per  unit solid angle radiating f rom the antenna, which is defined a s  

2 % (r, Q) = r Pr(r, 0) . ( 3 . 2 5 )  
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The r e su l t s  of this investigation a r e  Figures  6,  7, 8, and 9, each of 

which represents  a different antenna length and i s  a plot of Pn as a func- 

tion of Q a t  severa l  radii .  

each case.  

in  all directions for sma l l e r  antennas. 

The medium pa rame te r  K was -1- j .  03 i n  

These curves  show that the power attenuates m o r e  rapidly 

Discussion of these f igures  i s  de fe r r ed  to  sect ion 4. However, it 

s h o d d  be pointed OUT h e r e  that some  of the curves  would behave ve ry  

e r r a t i ca l ly  (par t icular ly  in Figure 5 )  if they w e r e  drawn through all of 

the points where computations were  made, s o  they w e r e  extended a s  

dotted l ines i n  a reasonable  manner .  These  points a r e  assumed to  be 

erroneous output result ing f r o m  computer round-off e r r o r  and the in-  

ability G €  the integration rout -ne  used to  handle the functions involved, 

which Figure 6 shows a r e  v e r y  badly behaved. 
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4. DISCUSSlON O F  R E S U L T S  AND CONCLUSIONS 

The paradoxes of increasing radiation res i s tance  with decreasing 

antenna length and of the infinite power radiated f rom the unit dipole, 

which occur in  anisotropic media a t  frequencies below the plasma and 

gyroresonant  frequencies, have received a grea t  deal  of attention i n  the 

l i terature ,  

lated, and both a l so  occur in uniaxial media. 

The two phenomena have been shown in section 1 to  be r e -  

Although on one hand there i s  not a grea t  deal  of application for  

uniaxial medium theory, the study of dipole radiation in this medium 

has been undertaken because this is the s implest  of anisotropic media 

and hence the theory can be developed more  fully, adding insight to  the 

m o r e  complicated problems more  closely related to  the physical world. 

Mit t ra  [ l965]  also pointed out that  when solving problems related to 

short  dipoles In the anisotropic media character ized by (1. 21, the s i m -  

plifyrng quasi-  static approximations employed because the antenna i s  

shor t  give r i s e  to  fields which a r e  independent of K". One can thus 

comment that these assumptions a r e  in  many ways equivalent t o  the 

assumption that the medium is uniaxial. 

sults obtained for  the uniaxial medium c a r r y  over a lso to  the m o r e  

general  anisotropic medium. 

Therefore, many of the r e -  

Several  unphysical resul ts  occur, however, when the radiation 

res i s tance  of a dipole with sinusoidal cur ren t  distribution immersed  in  
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a uniaxial medium with K negative is investigated. 

fields obtained a r e  singular on th ree  cones which extend to infinity. As 

pointed outs this ca s t s  s e r ious  doubt as t o  whether this  solution is  even 

valid. Furthermore,  Figure 2 shows that  if the "radiat ion res i s tance ' '  

is calculated anyway, it exhibits a curious L 

zero.  

First of all, the  

-1 
behavior as L approaches 

To explain these r e su l t s3  one would then look for  e r r o r s  in the de-  

velopment. 

dure  has  not been demonstrated for  K r e a l  and negative. 

K is  sl ightly complex the fields a r e  continuous and bounded s o  the valid- 

i ty  of the fields is cer ta in ,  and the scaling procedure is  fully justified. 

But Figure 3 shows that the power radiating through a sphere  of any 

fixed radius approaches the "power" obtained when K = -1 as the loss - 

l ess  l imi t  :s approached, showing that this  cannot be a cause.  The 

choice of a sinusoidal cu r ren t  dis t r ibut ion is  not extremely c r i t i ca l  

e i ther  because Balmain [1964] s t i l l  found the L 

"smoothed" current  dis t r ibat ion for which the  fields remained finite. 

One possible e r r o r  is that  the validity of the scaling proce-  

However, when 

-1  
behavior f o r  a 

One must  then conclude that the problem is not rea l i s t ic  in some  

other aspect .  Actually, the problem i s  unreal is t ic  in  many ways3 as 

brought out by  severa l  authors,  S t a ra s  [1966] commented that the Apple- 

ton-Hartree tensor of (1. 2 )  and (1. 4) m a y  not be appropriate to the prob- 

lem because the antenna has  negligible radius ,  violating a condition for  
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the development of the tensor .  

extent of the medium and the fact  that plasma sheath effects have been 

ignored a l so  make the problem unrealistic. Another defect, the one 

considered here,  is that f o r  any physical p lasma the re  will be electron 

collisions and hence some loss. To what extent does the paradox exist  

when the medium i s  slightly lossy? 

this question by discussing the power delivered by antennas with differ-  

ent lengths but the same  driving point cur ren t  for lossy media. 

Mittra [1965] pointed out that the infinite 

The following paragraphs answer 

Figure 4 demonstrates  that when the re  is some loss,  as  the length 

of the antenna decreases  the power near  the antenna exhibits the L be- 

havior of the loss less  case.  Howevers the power radiated through la rge  

spheres  decreases  as  the antenna becomes shorter!  In fact, scrut iny of 

Figure 4 would reveal  that the shor tes t  antenna i s  the f i r s t  of the group 

to  be radiating l e s s  power than the longest! It is  a lso important to note 

that even when the loss  tangent i s  a s  smal l  a s  e 03,  a s  in  Figure 4, this 

r eve r sa l  in the amount of power obtained occurs  in  what must  be con- 

s idered the "near  field.' ' It was observed in  computations not presented 

h e r e  that halving the loss  tangent approximately doubled the distance 

where the power curves of two antennas crossed,  so  with any reasonable 

amount of loss this r eve r sa l  in antenna effectiveness would occur a t  

distances much l e s s  than those normally used between the t ransmi t te r  

and receiver  of a communications system. 

- 1  
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-1 
Even the L behavior of the power travelling near  the antenna i s  

not completely unfamiliar, for consider the c a s e  of a shor t  dipole of f i -  

nite radius immersed  in  a lossy  isotropic medium. Deschamps [I9621 

presented a method whereby the driving point impedance of an antenna 

immersed  in a lossy  medium could be obtained f rom i ts  impedance (both 

res i s tance  and reactance)  in a loss less  medium. The input res i s tance  

2 2  
of a shor t  dipole in an  isotropic lo s s l e s s  medium has an w L behavior. 

As for the reactance,  a quasi-s ta t ic  approach reveals  that i f  the radius  

remains  proportional to the length, the shor t  antenna behaves as a ca -  

pacitor whose s ize  is proportional to  L. The impedance, then, a s  a 

function of length and frequency for a l o s s l e s s  medium i s  approximately 

where K and K a r e  positive constants.  
1 2 

Application of Deschamps'  procedure to  (4. 1)  shows that i n  a m e -  

dium with € =  €,(1- 6) and)=/, , the input res i s tance  is approximately 

. (4" 2)  
2 2  K 2  

2 
R .  ( w , L ) =  K w L t 

( I t s  ) w L  
i n  1 

This equation shows that the input res i s tance ,  and hence the power 

flowing near  the antenna, has an L behavior even in  an isotropic  lossy  

dielectr ic .  Unfortunately. the s imi la r i ty  ends when the lo s s l e s s  limit is 

approached, because the isotropic c a s e  shows L 

-1  

2 
behavior f o r  the r ad i -  
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ation resis tance whereas  Figures 3 and 4 show that this i s  not the case  

fo r  uniaxial media. 

Returning again to the lossy uniaxial medium, Figure 4 shows that 

the power attenuates m o r e  rapidly fo r  a short  dipole than for a long one. 

The reason  for this i s  not apparent f rom the field expressions (3 .2 j  and 

( 3 .  3j ,  s o  computations of the power per  unit solid angle were  ca r r i ed  out 

and presexted in Figilres 6,  7. 8, and 9. These flgures show that the 

power artenuates more  rapidly for a shor te r  antenna r n  a l l  directions,  

and that the power for shor te r  antennas tends to  be concentrated near  the 

character is t ic  cone emanating f rom the center of the antenna. The s ide-  

lobes apparent  in  Figure 9 resul t  f rom power traveling along the other 

two character is t ic  cones from the top and bottom of the antenna, but this 

power decays (o r  redistributes:i rapidly causing the sidelobes to disap-  

pear  in the curves representing l a rge r  distances,  

Therefore,  it i s  apparent that when rhe medium is considered to  

be lossy,  the unphysical resul ts  which occur when the medium i s  loss  ~ 

l e s s  largely disappear. This is not to  say  that the resu l t s  obtained for 

K = -1 a r e  valid, but ra ther  that the s imple model used i s  not appropri-  

a te  fo r  the lossless  case.  A s imi la r  situation exists in c i rcui t  theory 

when the circui t  below i s  considered. 

T C, T c= 
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C and C a r e  capacitors of equal value. C i s  init ially charged to  a 

potential V, and C i s  uncharged. When the switch i s  closed, cur ren t  

flows until ultimately the potential ac ross  each capacitor i s  V/2. 

1 2 1 

2 

How- 

ever ,  i f  R=O ( lossless  case )  the above solution contradicts the law of 

conservation of energy, and analagously a paradox resu l t s .  The usual 

explanation for  this i s  that the model neglects the effects of radiation. 

The conclusions for this study, then, a r e  

(1) The radiation res i s tance  of a f i lamentary dipole immersed  in 

a uniaxial medium with K positive i s  equal to its radiation r e -  

sistance i n  vacuum. 

If the dipole i s  assumed to have a sinusoidal cur ren t  d i s t r i -  (2 )  

bution, the fields obtained for K negative a r e  infinite along 

three charac te r i s t ic  cones, causing ser ious  doubt as  to the 

acceptability of these solutions. 

other cur ren t  distributions for which the fields a r e  singular 

Similar  r e m a r k s  hold for 

outside the source  region. 

If the "radiation resistance" i s  computed for this ca se  anyway, 

it i s  seen t o  be proportional to L for shor t  dipoles, creating 

the unphysical resul t  that the "radiat ion resis tance" increases  

( 3 )  

-1 

with decreasing antenna length. 

One of the ways this di lemma m a y  be resolved is  to  introduce 

a slight loss  to  the medium, in  which c a s e  the behavior of the 

(4) 
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power t ransmit ted bears striking s imilar i ty  to the case  where 

the medium is  isotropic and lossy: that  i s ,  increasing with de-  

creasing length near the antenna but decreasing a t  large d is -  

tances. 

The paradox of increasing "radiation resistance" with de-  

creasing length for  the loss less  case  can thus be viewed a s  a 

lossy medium input res is tance phenomenon that has been c a r -  

r ied over to  the lossless  l imit  because the model is inaccu- 

rate.  

Hence, the input res is tance of a dipole antenna in  a loss less  

anisotropic medium must  not be used as a measu re  of its ef- 

fectiveness i n  a communications sys t em when the frequency of 

operation is to  be below the plasma and gyroresonant  f r e -  

quencies. 

some loss ,  and alrhough a shor te r  antenna wil l  have a high in-  

put res is tance,  a longer antenna will actually t ransmi t  m o r e  

power a t  l a rge  distances. 

(5 J 

(6s 

This is because the actual environment will have 
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